As automated machine learning (AutoML) systems continue to progress in both sophistication and performance, it becomes important to understand the `how' and `why' of human-computer interaction (HCI) within these frameworks, both current and expected. Such a discussion is necessary for optimal system design, leveraging advanced data-processing capabilities to support decision-making involving humans, but it is also key to identifying the opportunities and risks presented by ever-increasing levels of machine autonomy. Within this context, we focus on the following questions: (i) How does HCI currently look like for state-of-the-art AutoML algorithms, especially during the stages of development, deployment, and maintenance? (ii) Do the expectations of HCI within AutoML frameworks vary for different types of users and stakeholders? (iii) How can HCI be managed so that AutoML solutions acquire human trust and broad acceptance? (iv) As AutoML systems become more autonomous and capable of learning from complex open-ended environments, will the fundamental nature of HCI evolve? To consider these questions, we project existing literature in HCI into the space of AutoML; this connection has, to date, largely been unexplored. In so doing, we review topics including user-interface design, human-bias mitigation, and trust in artificial intelligence (AI). Additionally, to rigorously gauge the future of HCI, we contemplate how AutoML may manifest in effectively open-ended environments. This discussion necessarily reviews projected developmental pathways for AutoML, such as the incorporation of reasoning, although the focus remains on how and why HCI may occur in such a framework rather than on any implementational details. Ultimately, this review serves to identify key research directions aimed at better facilitating the roles and modes of human interactions with both current and future AutoML systems.


翻译:随着自动化机器学习(Automal)系统在先进性和性能两方面继续取得进展,必须理解目前和预期的这些框架内的“如何”和“为什么”人-计算机互动(HCI),这种讨论对于最佳系统设计是必要的,利用先进的数据处理能力来支持涉及人类的决策,但对于查明日益增强的机器自主水平所带来的机会和风险也是至关重要的。在此背景下,我们侧重于以下问题:(一) HCI目前如何看待最新先进的Automal算法,特别是在开发、部署和维护阶段? (二) HCI在自动ML框架内对不同类型用户和利益攸关方的期望各不相同? (三) 如何管理HCI,使Aut-ML解决方案获得人类信任和广泛接受? (四) 随着自动MLU系统变得更加自主和能够从复杂的开放环境中学习,HCI的基本性质会如何演变?我们把HCI的现有文献投放到自动ML空间,特别是在开发、部署和维护阶段? (二) AutMLF框架内的HCI的预期性期望值是不同类型用户和利益攸关方的不同方向。 (这一联系,直到最终的用户间分析,最终的周期中,也就是分析,这种分析,直到最终的周期的周期,也就是的周期的周期中,这种分析可能如何进行。

0
下载
关闭预览

相关内容

人机交互(Human-Computer Interaction,HCI)是一种多学科的期刊,它定义和报道了人机交互的基础研究。HCI的目标是成为一份高质量的日志,将最好的研究和设计工作结合起来,以扩展该期刊对人机交互的理解。目标受众是研究群体,他们对如何设计交互式计算机系统以及如何实际使用这些系统的科学意义和实际意义都感兴趣交互科学和系统设计影响用户的理论、经验和方法问题。官网链接:https://www.tandfonline.com/toc/hhci20/current
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Arxiv
45+阅读 · 2019年12月20日
AutoML: A Survey of the State-of-the-Art
Arxiv
69+阅读 · 2019年8月14日
Arxiv
151+阅读 · 2017年8月1日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员