Classification of skull fracture is a challenging task for both radiologists and researchers. Skull fractures result in broken pieces of bone, which can cut into the brain and cause bleeding and other injury types. So it is vital to detect and classify the fracture very early. In real world, often fractures occur at multiple sites. This makes it harder to detect the fracture type where many fracture types might summarize a skull fracture. Unfortunately, manual detection of skull fracture and the classification process is time-consuming, threatening a patient's life. Because of the emergence of deep learning, this process could be automated. Convolutional Neural Networks (CNNs) are the most widely used deep learning models for image categorization because they deliver high accuracy and outstanding outcomes compared to other models. We propose a new model called SkullNetV1 comprising a novel CNN by taking advantage of CNN for feature extraction and lazy learning approach which acts as a classifier for classification of skull fractures from brain CT images to classify five fracture types. Our suggested model achieved a subset accuracy of 88%, an F1 score of 93%, the Area Under the Curve (AUC) of 0.89 to 0.98, a Hamming score of 92% and a Hamming loss of 0.04 for this seven-class multi-labeled classification.
翻译:头骨骨折的分类对放射学家和研究人员来说都是一项艰巨的任务。 骨骼骨折导致骨折碎, 骨骼骨折会导致骨折, 骨折会切入大脑, 导致出血和其他伤害类型。 因此, 早期检测和分类至关重要 。 在现实世界中, 骨折经常发生在多个地点 。 这使得检测骨折的类型更加难于发现骨折类型, 许多骨折类型可能会造成头骨折。 不幸的是, 人工检测头骨骨折和分类过程耗费时间, 威胁到病人的生命。 由于深入学习的出现, 这一过程可能是自动化的。 进化神经网络( CNNs) 是用于图像分类的最广泛使用的深层学习模型, 因为它们与其他模型相比具有高度的准确性和突出的结果 。 我们提出了一个叫做SkullNetV1的新模型, 其中包括新型CNN, 利用CNN进行特征提取和懒惰性学习方法, 用于对脑骨折的分类, 从脑部CT图像进行分类, 从而对五类骨折类型进行分类。 我们建议的模式达到了88%的子精确度,, F1分为93%,, 在Curve( 区域下) 99- 0. 0. 0.988, 和 7 mill8, Ham 7 m) 10, 的等级为9808, 。