Traditionally, recommender systems operate by returning a user a set of items, ranked in order of estimated relevance to that user. In recent years, methods relying on stochastic ordering have been developed to create "fairer" rankings that reduce inequality in who or what is shown to users. Complete randomization -- ordering candidate items randomly, independent of estimated relevance -- is largely considered a baseline procedure that results in the most equal distribution of exposure. In industry settings, recommender systems often operate via a two-step process in which candidate items are first produced using computationally inexpensive methods and then a full ranking model is applied only to those candidates. In this paper, we consider the effects of inequality at the first step and show that, paradoxically, complete randomization at the second step can result in a higher degree of inequality relative to deterministic ordering of items by estimated relevance scores. In light of this observation, we then propose a simple post-processing algorithm in pursuit of reducing exposure inequality that works both when candidate sets have a high level of imbalance and when they do not. The efficacy of our method is illustrated on both simulated data and a common benchmark data set used in studying fairness in recommender systems.


翻译:传统上,推荐者系统的运作方式是将用户返回一组物品,按与该用户的关联性估计顺序排列。近年来,基于随机排序的方法已经发展起来,以创造“更公平的”排名,减少向用户显示的是谁或什么的不平等。完全随机化 -- -- 随机性地订购候选物品,与估计的相关性无关 -- -- 在很大程度上被视为一个基线程序,其结果是最平等地分配暴露。在行业环境中,推荐者系统往往通过一个两步程序运作,首先使用计算成本低廉的方法制作候选物品,然后只对这些候选人采用完全的排名模式。在本文件中,我们考虑了不平等在第一步的影响,并表明,自相矛盾的是,在第二步完全随机化可以导致与根据估计的相关性分数对项目进行确定性排序相比的更大程度的不平等。根据这一观察,我们然后提出一个简单的后处理算法,以追求减少暴露不平等性,在候选人组合高度不平衡和没有选择时都起作用。我们的方法的效力在模拟数据和共同基准数据集上都有说明。

0
下载
关闭预览

相关内容

【RecSys22教程】多阶段推荐系统的神经重排序,90页ppt
专知会员服务
25+阅读 · 2022年9月30日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月20日
Arxiv
0+阅读 · 2022年10月20日
Arxiv
92+阅读 · 2020年2月28日
Arxiv
23+阅读 · 2018年8月3日
VIP会员
相关VIP内容
【RecSys22教程】多阶段推荐系统的神经重排序,90页ppt
专知会员服务
25+阅读 · 2022年9月30日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员