Content recommender systems are generally adept at maximizing immediate user satisfaction but to optimize for the \textit{long-run} user value, we need more statistically sophisticated solutions than off-the-shelf simple recommender algorithms. In this paper we lay out such a solution to optimize \textit{long-run} user value through discounted utility maximization and a machine learning method we have developed for estimating it. Our method estimates which content producers are most likely to create the highest long-run user value if their content is shown more to users who enjoy it in the present. We do this estimation with the help of an A/B test and heterogeneous effects machine learning model. We have used such models in Facebook's feed ranking system, and such a model can be used in other recommender systems.
翻译:内容推荐系统一般都适应于最大限度地提高用户的即时满意度,但为了优化用户的用户价值,我们需要比现成的简单推荐算法更精密的统计解决方案。 在本文中,我们提出这样的解决方案,通过贴现的效用最大化和我们开发的机器学习方法来优化用户价值。我们的方法估计,如果向目前享受该数据的用户展示更多内容,内容制作者最有可能创造最高的长期用户价值。我们在A/B测试和多种效果机器学习模型的帮助下进行这一估算。我们在Facebook的饲料排名系统中使用了这种模型,其他推荐系统也可以使用这种模型。