This article presents a new NLP task called structured information inference (SIS) to address the complexities of information extraction at the device level in materials science. We accomplished this task by finetuning GPT-3 on a exsiting perovskite solar cell FAIR dataset with 91.8 F1-score and we updated the dataset with all related scientific papers up to now. The produced dataset is formatted and normalized, enabling its direct utilization as input in subsequent data analysis. This feature will enable materials scientists to develop their own models by selecting high-quality review papers within their domain. Furthermore, we designed experiments to predict PCE and reverse-predict parameters and obtained comparable performance with DFT, which demonstrates the potential of large language models to judge materials and design new materials like a materials scientist.
翻译:本文提出了一种新的自然语言处理任务,称为结构化信息推理(SIS),以应对材料科学设备级信息提取的复杂性。我们使用预训练语言模型GPT-3对现有的钙钛矿太阳能电池FAIR数据集进行了微调,并更新了该数据集到目前为止所有相关的科学论文。生成的数据集经过格式化和归一化处理,使其可以直接用作后续数据分析的输入。这一特点将使材料科学家能够通过选择自己领域内的高质量综述论文来开发自己的模型。此外,我们设计实验来预测PCE和反向预测参数,并获得了与DFT相当的性能,这展示了大型语言模型像材料科学家一样判断材料并设计新材料的潜力。