We investigate adversarial-sample generation methods from a frequency domain perspective and extend standard $l_{\infty}$ Projected Gradient Descent (PGD) to the frequency domain. The resulting method, which we call Spectral Projected Gradient Descent (SPGD), has better success rate compared to PGD during early steps of the method. Adversarially training models using SPGD achieves greater adversarial accuracy compared to PGD when holding the number of attack steps constant. The use of SPGD can, therefore, reduce the overhead of adversarial training when utilizing adversarial generation with a smaller number of steps. However, we also prove that SPGD is equivalent to a variant of the PGD ordinarily used for the $l_{\infty}$ threat model. This PGD variant omits the sign function which is ordinarily applied to the gradient. SPGD can, therefore, be performed without explicitly transforming into the frequency domain. Finally, we visualize the perturbations SPGD generates and find they use both high and low-frequency components, which suggests that removing either high-frequency components or low-frequency components is not an effective defense.


翻译:我们从频域角度对对抗性典型生成方法进行调查,并将标准 $l ⁇ infty}$surved Emplegene (PGD) 推广到频域。 由此产生的方法(我们称之为Spectral Profed Emplement (SPGD)) 与该方法早期步骤的PGD相比,其成功率更高。 使用SPGD 的反向培训模型在保持攻击步骤数量不变时,其对抗性生成准确度高于PGD。 因此, SPGD的使用可以减少对抗性培训的间接费用, 使用较少的步骤。 但是, 我们还证明SPGD 等同于通常用于 $l ⁇ infty} 威胁模型的 PGD 变量。 此 PGD 变量省略了通常适用于梯度的标志功能。 因此, SPGDD 可以在不明确地转换为频率域的情况下进行。 最后, 我们设想SPGDD产生的影响, 并发现它们使用高频和低频部分, 这表明删除高频或低频部分不是有效防御。

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
276+阅读 · 2020年11月26日
专知会员服务
44+阅读 · 2020年10月31日
【ST2020硬核课】深度神经网络,57页ppt
专知会员服务
43+阅读 · 2020年8月19日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
75+阅读 · 2020年7月26日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
46+阅读 · 2020年7月4日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Arxiv
7+阅读 · 2018年6月8日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关VIP内容
最新《Transformers模型》教程,64页ppt
专知会员服务
276+阅读 · 2020年11月26日
专知会员服务
44+阅读 · 2020年10月31日
【ST2020硬核课】深度神经网络,57页ppt
专知会员服务
43+阅读 · 2020年8月19日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
75+阅读 · 2020年7月26日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
46+阅读 · 2020年7月4日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Top
微信扫码咨询专知VIP会员