We investigate adversarial-sample generation methods from a frequency domain perspective and extend standard $l_{\infty}$ Projected Gradient Descent (PGD) to the frequency domain. The resulting method, which we call Spectral Projected Gradient Descent (SPGD), has better success rate compared to PGD during early steps of the method. Adversarially training models using SPGD achieves greater adversarial accuracy compared to PGD when holding the number of attack steps constant. The use of SPGD can, therefore, reduce the overhead of adversarial training when utilizing adversarial generation with a smaller number of steps. However, we also prove that SPGD is equivalent to a variant of the PGD ordinarily used for the $l_{\infty}$ threat model. This PGD variant omits the sign function which is ordinarily applied to the gradient. SPGD can, therefore, be performed without explicitly transforming into the frequency domain. Finally, we visualize the perturbations SPGD generates and find they use both high and low-frequency components, which suggests that removing either high-frequency components or low-frequency components is not an effective defense.
翻译:我们从频域角度对对抗性典型生成方法进行调查,并将标准 $l ⁇ infty}$surved Emplegene (PGD) 推广到频域。 由此产生的方法(我们称之为Spectral Profed Emplement (SPGD)) 与该方法早期步骤的PGD相比,其成功率更高。 使用SPGD 的反向培训模型在保持攻击步骤数量不变时,其对抗性生成准确度高于PGD。 因此, SPGD的使用可以减少对抗性培训的间接费用, 使用较少的步骤。 但是, 我们还证明SPGD 等同于通常用于 $l ⁇ infty} 威胁模型的 PGD 变量。 此 PGD 变量省略了通常适用于梯度的标志功能。 因此, SPGDD 可以在不明确地转换为频率域的情况下进行。 最后, 我们设想SPGDD产生的影响, 并发现它们使用高频和低频部分, 这表明删除高频或低频部分不是有效防御。