Designing adaptable control laws that can transfer between different robots is a challenge because of kinematic and dynamic differences, as well as in scenarios where external sensors are used. In this work, we empirically investigate a neural networks ability to approximate the Jacobian matrix for an application in Cartesian control schemes. Specifically, we are interested in approximating the kinematic Jacobian, which arises from kinematic equations mapping a manipulator's joint angles to the end-effector's location. We propose two different approaches to learn the kinematic Jacobian. The first method arises from visual servoing where we learn the kinematic Jacobian as an approximate linear system of equations from the k-nearest neighbors for a desired joint configuration. The second, motivated by forward models in machine learning, learns the kinematic behavior directly and calculates the Jacobian by differentiating the learned neural kinematics model. Simulation experimental results show that both methods achieve better performance than alternative data-driven methods for control, provide closer approximations to the proper kinematics Jacobian matrix, and on average produce better-conditioned Jacobian matrices. Real-world experiments were conducted on a Kinova Gen-3 lightweight robotic manipulator, which includes an uncalibrated visual servoing experiment, a practical application of our methods, as well as a 7-DOF point-to-point task highlighting that our methods are applicable on real robotic manipulators.


翻译:设计可在不同机器人之间传输的可调整的控制法是一项挑战,因为运动和动态差异,以及使用外部传感器的情景。在这项工作中,我们实证地调查了神经网络的能力,以近似雅各布矩阵,用于卡尔提斯控制计划的应用。具体地说,我们有兴趣接近运动方程,该运动方程来自运动方程,绘制操纵者到最终效应者位置的联合角度。我们提出了两种不同的方法,以学习运动和动态雅各仪。第一种方法来自视觉静音,我们从 K 近邻那里学习运动雅各仪,作为近距离方方的近似线性线性系统,用于理想的联合配置。第二,由机器学习的前期模型驱动,直接学习运动行为,通过区分学习的神经感官模型计算雅各仪。模拟实验结果表明,这两种方法的性能优于替代的以数据驱动的控制方法,更接近于适当的亲近的雅各仪矩阵矩阵,在平均情况下,将运动雅各仪的直线系实验方法进行更精确的试测。

0
下载
关闭预览

相关内容

专知会员服务
73+阅读 · 2021年5月28日
专知会员服务
77+阅读 · 2021年3月16日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
72+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
276+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年8月8日
Arxiv
5+阅读 · 2021年1月7日
Arxiv
7+阅读 · 2018年12月26日
VIP会员
相关VIP内容
专知会员服务
73+阅读 · 2021年5月28日
专知会员服务
77+阅读 · 2021年3月16日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
72+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
276+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员