The control variates (CV) method is widely used in policy gradient estimation to reduce the variance of the gradient estimators in practice. A control variate is applied by subtracting a baseline function from the state-action value estimates. Then the variance-reduced policy gradient presumably leads to higher learning efficiency. Recent research on control variates with deep neural net policies mainly focuses on scalar-valued baseline functions. The effect of vector-valued baselines is under-explored. This paper investigates variance reduction with coordinate-wise and layer-wise control variates constructed from vector-valued baselines for neural net policies. We present experimental evidence suggesting that lower variance can be obtained with such baselines than with the conventional scalar-valued baseline. We demonstrate how to equip the popular Proximal Policy Optimization (PPO) algorithm with these new control variates. We show that the resulting algorithm with proper regularization can achieve higher sample efficiency than scalar control variates in continuous control benchmarks.


翻译:在政策梯度估算中广泛使用控制变异方法,以降低实际中梯度估计值的差异。从国家行动值估算中减去基线函数,即可应用控制变异方法。然后,差异变异政策梯度可能提高学习效率。最近对控制变异的研究,加上深神经网政策,主要侧重于标定的基线功能。矢量估值基线的影响是探索不足的。本文用协调性和层次性控制变异方法调查差异减少,从神经网政策矢量估值基线中构建的矢量值测位基线中,可采用协调性和层次性控制变异方法。我们提出实验性证据,表明在这种基线中,差异可以低于传统的标定值基线。我们展示了如何用这些新的控制变异方法装备流行的普罗克西亚政策优化算法。我们表明,在连续控制基准中,经过适当规范的算法可以实现比卡拉控变法更高的样本效率。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
【DeepMind】强化学习教程,83页ppt
专知会员服务
154+阅读 · 2020年8月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
180+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
强化学习 DQN 初探之2048
DataFunTalk
7+阅读 · 2019年12月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年10月6日
Generalization and Regularization in DQN
Arxiv
6+阅读 · 2019年1月30日
Arxiv
7+阅读 · 2018年12月26日
VIP会员
相关VIP内容
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
【DeepMind】强化学习教程,83页ppt
专知会员服务
154+阅读 · 2020年8月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
180+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
强化学习 DQN 初探之2048
DataFunTalk
7+阅读 · 2019年12月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员