Non-asymptotic statistical analysis is often missing for modern geometry-aware machine learning algorithms due to the possibly intricate non-linear manifold structure. This paper studies an intrinsic mean model on the manifold of restricted positive semi-definite matrices and provides a non-asymptotic statistical analysis of the Karcher mean. We also consider a general extrinsic signal-plus-noise model, under which a deterministic error bound of the Karcher mean is provided. As an application, we show that the distributed principal component analysis algorithm, LRC-dPCA, achieves the same performance as the full sample PCA algorithm. Numerical experiments lend strong support to our theories.
翻译:现代几何感知机器学习算法通常缺乏非渐进统计分析,由于可能复杂的非线性流形结构。本文研究了限制正半定矩阵流形上的内在均值模型,并提供了 Karcher 均值的非渐进统计分析。我们还考虑了一个一般的外部信号加噪声模型,在此模型下,提供了 Karcher 均值的确定性误差界。作为应用,我们展示了分布式主成分分析算法 LRC-dPCA 实现与全样本主成分分析算法相同的性能。数值实验强有力地支持了我们的理论。