Fake news, misinformation, and unverifiable facts on social media platforms propagate disharmony and affect society, especially when dealing with an epidemic like COVID-19. The task of Fake News Detection aims to tackle the effects of such misinformation by classifying news items as fake or real. In this paper, we propose a novel approach that improves over the current automatic fake news detection approaches by automatically gathering evidence for each claim. Our approach extracts supporting evidence from the web articles and then selects appropriate text to be treated as evidence sets. We use a pre-trained summarizer on these evidence sets and then use the extracted summary as supporting evidence to aid the classification task. Our experiments, using both machine learning and deep learning-based methods, help perform an extensive evaluation of our approach. The results show that our approach outperforms the state-of-the-art methods in fake news detection to achieve an F1-score of 99.25 over the dataset provided for the CONSTRAINT-2021 Shared Task. We also release the augmented dataset, our code and models for any further research.
翻译:在社交媒体平台上,虚假新闻、错误消息和无法核实的事实传播不和谐,影响社会,特别是在应对COVID-19等流行病时。假消息探测的任务是通过将新闻项目归类为假的或真实的来应对这种错误的影响。在本文中,我们提出一种新的方法,通过自动收集每项索赔的证据来改进当前自动假新闻探测方法。我们的方法从网络文章中提取了支持证据,然后选择了适当的文本作为证据组处理。我们使用这些证据组的预先培训的总结器,然后利用提取的总结作为辅助证据来帮助分类工作。我们利用机器学习和深层学习方法进行的实验,有助于对我们的方法进行广泛的评估。结果显示,我们的方法在假新闻探测方面比为COTRAINT-2021共同任务提供的数据集高出99.25元。我们还发布了扩充数据集、我们的代码和模型,供任何进一步的研究使用。