In this paper, we study a navigation problem where a mobile robot needs to locate a mmWave wireless signal. Using the directionality properties of the signal, we propose an estimation and path planning algorithm that can efficiently navigate in cluttered indoor environments. We formulate Extended Kalman filters for emitter location estimation in cases where the signal is received in line-of-sight or after reflections. We then propose to plan motion trajectories based on belief-space dynamics in order to minimize the uncertainty of the position estimates. The associated non-linear optimization problem is solved by a state-of-the-art constrained iLQR solver. In particular, we propose a method that can handle a large number of obstacles (~300) with reasonable computation times. We validate the approach in an extensive set of simulations. We show that our estimators can help increase navigation success rate and that planning to reduce estimation uncertainty can improve the overall task completion speed.
翻译:在本文中, 我们研究移动机器人需要定位 mmWave 无线信号的导航问题。 使用该信号的方向性特性, 我们提出一个可以有效在封闭的室内环境中导航的估算和路径规划算法。 我们为在视觉线下或反射后收到信号的情况下进行发射地点估计制定扩展的 Kalman 过滤器。 我们然后提议根据信仰空间动态规划运动轨迹, 以尽量减少位置估计的不确定性。 相关的非线性优化问题由最先进的限制 iLQR 解答器解决。 特别是, 我们提出一种能够以合理的计算时间处理大量障碍( ~ 300) 的方法。 我们在一系列广泛的模拟中验证了该方法。 我们表明, 我们的测算器可以帮助提高导航成功率, 而减少估计不确定性的规划可以提高总体任务完成速度 。</s>