We prove the existence and uniqueness of the complexified Nonlinear Poisson-Boltzmann Equation (nPBE) in a bounded domain in $\mathbb{R}^3$. The nPBE is a model equation in nonlinear electrostatics. The standard convex optimization argument to the complexified nPBE no longer applies, but instead, a contraction mapping argument is developed. Furthermore, we show that uniqueness can be lost if the hypotheses given are not satisfied. The complixified nPBE is highly relevant to regularity analysis of the solution of the real nPBE with respect to the dielectric (diffusion) and Debye-H\"uckel coefficients. This approach is also well-suited to investigate the existence and uniqueness problem for a wide class of semi-linear elliptic Partial Differential Equations (PDEs).
翻译:我们证明在$\mathb{R ⁇ 3$的封闭域中,非线性非线性Poisson-Boltzmann Equation(nPBE)的存在和独特性。 nPBE是非线性电子statics的模型方程式。对复杂的nPBE的标准共振优化参数不再适用,而是发展了一个缩进绘图参数。此外,我们表明,如果所提供的假设不能得到满足,则可能失去独一性。整合的nPBE与对实性NPBE在电(输电)和Debye-H\uckel系数方面的解决方案进行定期分析密切相关。这个方法也非常适合调查大类半线性椭圆部分差异(PDEs)的存在和独特性问题。