For Reed-Solomon codes, the key equation relates the syndrome polynomial---computed from the parity check matrix and the received vector---to two unknown polynomials, the locator and the evaluator. The roots of the locator polynomial identify the error positions. The evaluator polynomial, along with the derivative of the locator polynomial, gives the error values via the Forney formula. The Berlekamp-Massey algorithm efficiently computes the two unknown polynomials. This chapter shows how the key equation, the Berlekamp-Massey algorithm, the Forney formula, and another formula for error evaluation due to Horiguchi all generalize in a natural way to one-point codes. The algorithm presented here is based on K\"otter's adaptation of Sakata's algorithm.
翻译:对于Reed- Solomon 代码, 关键方程式涉及到从对等检查矩阵和接收到的矢量- 至两个未知的多数值矩阵、 定位器和评价器。 定位器多数值的根部可以识别错误位置。 评估器多数值, 连同定位器多数值的衍生物, 通过 Forney 公式给出错误值。 Berlekamp- Masssey 算法有效地计算了两个未知的多数值。 本章显示了关键方程式、 Berlekamp- Masssey 算法、 Forney 公式和另一个因霍里口而导致的错误评价公式是如何以自然方式对一点代码进行概括的。 这里的算法基于 K\“ otter ” 的 Sakata 算法的调整 。