It is known in [1] that a regular explicit Euler-type scheme with a uniform timestep, though computationally efficient, may diverge for the stochastic Allen--Cahn equation. To overcome the divergence, this paper proposes an adaptive time-stepping full discretization, whose spatial discretization is based on the spectral Galerkin method, and temporal direction is the adaptive exponential integrator scheme. It is proved that the expected number of timesteps is finite if the adaptive timestep function is bounded suitably. Based on the stability analysis in $\mathcal{C}(\mathcal{O},\mathbb{R})$-norm of the numerical solution, it is shown that the strong convergence order of this adaptive time-stepping full discretization is the same as usual, i.e., order ${\beta}$ in space and $\frac{\beta}{2}$ in time under the correlation assumption $\|A^{\frac{\beta-1}{2}}Q^{\frac{1}{2}}\|_{\mathcal{L}_2}<\infty,0<\beta\leq 1$ on the noise. Numerical experiments are presented to support the theoretical results.
翻译:[1]中知道,一个具有统一时间步骤(尽管计算效率较高)的定期直线电动类型计划,在随机Allen-Cahn方程式中可能出现差异。为克服差异,本文件建议采用适应性时间步骤完全离散,其空间离散以光谱加列金法为基础,时间方向是适应性指数聚合器计划。事实证明,如果适应性时间步骤功能受适当约束,预期的时间步骤数量是有限的。根据对数值解决方案中美元(mathcal{C}(mathcal{O},\mathbb{R})的稳定性分析,显示这种适应性时间步骤完全离散化的强烈趋同顺序与通常的相同,即空间值$(Beta)和美元(frac_Beta)%2,在相关假设($A ⁇ frac_fera_Beta_%%2 ⁇ 2 ⁇ fera2}下,在相关假设下,预期的时间步骤数量是有限的。根据(mathc_Q_Q_Q_Q_Q_Q_Q_Q_Q_Q_Q_Q_Q_Q_Q_Q_Q_Q_Q_Q_Q_Q_Q_Q_Q_Q_Q_Q_Q_Q_Q_Q_Q_Q_Q_Q_Q_Q_BAR_BAR_Q_Q_Q_Q_Q_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR___BAR_________________________BAR___________________________________BAR___________________________