We present CycleDance, a dance style transfer system to transform an existing motion clip in one dance style to a motion clip in another dance style while attempting to preserve motion context of the dance. Our method extends an existing CycleGAN architecture for modeling audio sequences and integrates multimodal transformer encoders to account for music context. We adopt sequence length-based curriculum learning to stabilize training. Our approach captures rich and long-term intra-relations between motion frames, which is a common challenge in motion transfer and synthesis work. We further introduce new metrics for gauging transfer strength and content preservation in the context of dance movements. We perform an extensive ablation study as well as a human study including 30 participants with 5 or more years of dance experience. The results demonstrate that CycleDance generates realistic movements with the target style, significantly outperforming the baseline CycleGAN on naturalness, transfer strength, and content preservation.
翻译:我们展示了一种舞蹈风格的交接系统,将一种舞蹈风格的现有运动片段转变为另一种舞蹈风格的运动片段,同时试图保存舞蹈的运动背景。我们的方法扩展了一种现有的循环GAN结构,用于制作音频序列模型,并结合了多式变压器编码器,以顾及音乐背景。我们采用了基于序列的课程学习以稳定培训。我们的方法捕捉了运动框架之间的丰富和长期内部关系,这是运动转移和合成工作中的共同挑战。我们进一步引入了在舞蹈运动中衡量转移强度和内容保存的新指标。我们开展了一项广泛的通融研究以及一项人类研究,其中包括30名有5年或5年以上舞蹈经验的参与者。结果显示周期产生符合目标风格的现实运动,在自然特性、转移强度和内容保存方面大大超过基线的循环GAN。