We consider generalizations of the $k$-Center problem in graphs of low doubling and highway dimension. For the Capacitated $k$-Supplier with Outliers (CkSwO) problem, we show an efficient parameterized approximation scheme (EPAS) when the parameters are $k$, the number of outliers and the doubling dimension of the supplier set. On the other hand, we show that for the Capacitated $k$-Center problem, which is a special case of CkSwO, obtaining a parameterized approximation scheme (PAS) is $\mathrm{W[1]}$-hard when the parameters are $k$, and the highway dimension. This is the first known example of a problem for which it is hard to obtain a PAS for highway dimension, while simultaneously admitting an EPAS for doubling dimension.
翻译:我们考虑在低翻倍和高速公路维度的图表中概括地说明美元-中心问题。 对于外延(CkSwO)能力强的美元-供应商问题,当参数为美元、外部离线数量和供应商设定的双倍维度时,我们展示了一个高效的参数化近似方案。另一方面,我们展示出,对于能力强的美元-中心问题,这是CkSwO的一个特例,当参数为美元时,获得参数化的近似方案(PAS)为$\mathrm{W[1]}美元-硬值,而高速公路维度为$k$,这是第一个已知的问题实例,很难获得高速公路维度的PAS,同时接受EPAS的双维度。