We show that the error probability of reconstructing kernel matrices from Random Fourier Features for the Gaussian kernel function is at most $\mathcal{O}(R^{2/3} \exp(-D))$, where $D$ is the number of random features and $R$ is the diameter of the data domain. We also provide an information-theoretic method-independent lower bound of $\Omega(\exp(-D))$ for $R>2.1$. Compared to prior work, we are the first to show that the error probability for random Fourier features is independent of the dimensionality of data points. As applications of our theory, we obtain dimension-independent bounds for kernel ridge regression and support vector machines.


翻译:我们显示,从随机 Fourier 特性中重建高山内核功能的内核矩阵的误差概率最高为$\mathcal{O}(R ⁇ 2/3}\ frem(-D)$),其中美元是随机特性的数量,美元是数据域的直径。我们还提供了一个以$\Omega(\exp(-D))$为单位的低信度的信息-理论方法约束值为$/Omega(\ex(-D))$(R>2.1美元)。与先前的工作相比,我们是第一个显示随机 Fourier 特性的误差概率独立于数据点的维度。作为我们理论的应用,我们获得了内核脊回归和支持矢量机器的维独立边框。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
150+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
sklearn 与分类算法
人工智能头条
7+阅读 · 2019年3月12日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
9+阅读 · 2018年3月28日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
sklearn 与分类算法
人工智能头条
7+阅读 · 2019年3月12日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员