Unsupervised image-to-image translation tasks aim to find a mapping between a source domain X and a target domain Y from unpaired training data. Contrastive learning for Unpaired image-to-image Translation (CUT) yields state-of-the-art results in modeling unsupervised image-to-image translation by maximizing mutual information between input and output patches using only one encoder for both domains. In this paper, we propose a novel method based on contrastive learning and a dual learning setting (exploiting two encoders) to infer an efficient mapping between unpaired data. Additionally, while CUT suffers from mode collapse, a variant of our method efficiently addresses this issue. We further demonstrate the advantage of our approach through extensive ablation studies demonstrating superior performance comparing to recent approaches in multiple challenging image translation tasks. Lastly, we demonstrate that the gap between unsupervised methods and supervised methods can be efficiently closed.
翻译:未经监督的图像到图像翻译任务旨在寻找来源域 X 和目标域 Y 从未受监督的培训数据中绘制地图。 用于未受监督图像到图像翻译( CUT) 的对比性学习通过在输入和输出补丁之间使用两个域的唯一一个编码器实现最大程度的相互信息最大化,在模拟未经监督的图像到图像翻译( CUT) 中产生最先进的结果。 在本文件中,我们提出了一个基于对比学习和双重学习环境( 利用两个编码器)的新方法, 以推导未受监督的数据之间的有效绘图。 此外, 虽然 CUT 受模式崩溃的影响, 我们的方法的变种有效地解决这一问题。 我们进一步通过广泛的反差研究展示了我们方法的优势, 展示了在多个具有挑战性的形象翻译任务中与最近的方法相比的优异性表现。 最后, 我们证明, 未经监督的方法与监督的方法之间的差距可以有效地弥合。