The bi-sparse blind deconvolution problem is studied -- that is, from the knowledge of $h*(Qb)$, where $Q$ is some linear operator, recovering $h$ and $b$, which are both assumed to be sparse. The approach rests upon lifting the problem to a linear one, and then applying the hierarchical sparsity framework. In particular, the efficient HiHTP algorithm is proposed for performing the recovery. Then, under a random model on the matrix $Q$, it is theoretically shown that an $s$-sparse $h \in \mathbb{K}^\mu$ and $\sigma$-sparse $b \in \mathbb{K}^n$ with high probability can be recovered when $\mu \succcurlyeq s^{2}\log(\mu) + s^{2}\sigma \log(n)$.
翻译:研究了双螺旋盲向分解问题 -- -- 也就是说,根据对美元(Qb)的认识,美元是某种线性操作员的Q$,回收美元和美元,两者均假定是稀疏的。这种方法取决于将问题提升到线性操作,然后适用等级宽度框架。特别是,为进行恢复,提出了高效的HHTP算法。然后,在基数$的随机模型下,理论上显示,当$\mu\succcullieq s ⁇ 2 ⁇ log(\mu)+ s ⁇ 2 ⁇ sigma\log(n)美元时,可以回收高概率的美元和美元。