The activations of language transformers like GPT-2 have been shown to linearly map onto brain activity during speech comprehension. However, the nature of these activations remains largely unknown and presumably conflate distinct linguistic classes. Here, we propose a taxonomy to factorize the high-dimensional activations of language models into four combinatorial classes: lexical, compositional, syntactic, and semantic representations. We then introduce a statistical method to decompose, through the lens of GPT-2's activations, the brain activity of 345 subjects recorded with functional magnetic resonance imaging (fMRI) during the listening of ~4.6 hours of narrated text. The results highlight two findings. First, compositional representations recruit a more widespread cortical network than lexical ones, and encompass the bilateral temporal, parietal and prefrontal cortices. Second, contrary to previous claims, syntax and semantics are not associated with separated modules, but, instead, appear to share a common and distributed neural substrate. Overall, this study introduces a versatile framework to isolate, in the brain activity, the distributed representations of linguistic constructs.
翻译:GPT-2等语言变压器的激活在语言理解过程中被直线地映射到大脑活动上,然而,这些激活的性质基本上仍不为人知,而且大概是将不同的语言类别混为一文。在这里,我们建议进行分类,将语言模型的高维激活因素纳入四个组合类别:词汇、组成、合成和语义表达;然后,我们采用统计方法,通过GPT-2的激活镜头将345个主体的大脑活动分解成功能性磁共振成像(fMRI),在听~4.6小时的解析文本时记录为345个主体的大脑活动。结果突出两个结论:首先,组成表达方式将语言模型的广度网络纳入比词汇型网络更为广泛,并包含双边的时间、成形、成形和前形的语义表达方式。第二,与以前的说法相反,合成和语义表达方式与分离的模块没有关联,相反,但似乎共享一个通用和分布式的神经下层。总体而言,本研究引入了一个多功能化框架,在大脑活动中隔离分布的语言构造结构。