State-of-the-art language models (LMs) represented by long-short term memory recurrent neural networks (LSTM-RNNs) and Transformers are becoming increasingly complex and expensive for practical applications. Low-bit neural network quantization provides a powerful solution to dramatically reduce their model size. Current quantization methods are based on uniform precision and fail to account for the varying performance sensitivity at different parts of LMs to quantization errors. To this end, novel mixed precision neural network LM quantization methods are proposed in this paper. The optimal local precision choices for LSTM-RNN and Transformer based neural LMs are automatically learned using three techniques. The first two approaches are based on quantization sensitivity metrics in the form of either the KL-divergence measured between full precision and quantized LMs, or Hessian trace weighted quantization perturbation that can be approximated efficiently using matrix free techniques. The third approach is based on mixed precision neural architecture search. In order to overcome the difficulty in using gradient descent methods to directly estimate discrete quantized weights, alternating direction methods of multipliers (ADMM) are used to efficiently train quantized LMs. Experiments were conducted on state-of-the-art LF-MMI CNN-TDNN systems featuring speed perturbation, i-Vector and learning hidden unit contribution (LHUC) based speaker adaptation on two tasks: Switchboard telephone speech and AMI meeting transcription. The proposed mixed precision quantization techniques achieved "lossless" quantization on both tasks, by producing model size compression ratios of up to approximately 16 times over the full precision LSTM and Transformer baseline LMs, while incurring no statistically significant word error rate increase.


翻译:以长期短期内存常态神经网络(LSTM-RNNNs)和变异器为代表的状态语言模型(LMM)正在变得越来越复杂,实际应用成本越来越昂贵。低位神经网络量化为大幅缩小模型大小提供了强大的解决方案。当前量化方法基于统一精度,没有考虑到LMS不同部分对量化错误的不同性能敏感性。为此,本文件提出了新型的精密神经网络(LMQ)量化方法。LSTM-RNN和以变异器为基础的神经系统的最佳本地精确选择正在用三种技术自动学习。前两种方法基于全精度和四分制LMMS之间测量的定量敏感度度度度,或者Hessian的微量度对量化错误过量度,而采用矩阵模型自由技术,第三种方法基于混合精度神经结构搜索。为了克服使用梯度下降方法直接估算离析离析式双端的螺旋LMNMML, 使用LLMML方向方法, 低度计算。

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
309+阅读 · 2020年11月26日
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月15日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员