We propose a simple yet efficient anchor-free instance segmentation, called CenterMask, that adds a novel spatial attention-guided mask (SAG-Mask) branch to anchor-free one stage object detector (FCOS) in the same vein with Mask R-CNN. Plugged into the FCOS object detector, the SAG-Mask branch predicts a segmentation mask on each box with the spatial attention map that helps to focus on informative pixels and suppress noise. We also present an improved backbone networks, VoVNetV2, with two effective strategies: (1) residual connection for alleviating the optimization problem of larger VoVNet \cite{lee2019energy} and (2) effective Squeeze-Excitation (eSE) dealing with the channel information loss problem of original SE. With SAG-Mask and VoVNetV2, we deign CenterMask and CenterMask-Lite that are targeted to large and small models, respectively. Using the same ResNet-101-FPN backbone, CenterMask achieves 38.3%, surpassing all previous state-of-the-art methods while at a much faster speed. CenterMask-Lite also outperforms the state-of-the-art by large margins at over 35fps on Titan Xp. We hope that CenterMask and VoVNetV2 can serve as a solid baseline of real-time instance segmentation and backbone network for various vision tasks, respectively. The Code is available at https://github.com/youngwanLEE/CenterMask.
翻译:我们提议一个简单而高效的无锚实例分解器,名为CenterMask,它增加了一个新的空间关注引导面罩(SAG-Mask)分支,与Mask R-CNN同流合污,与FCOS 物体探测器同流合污。 SAG-Mask分会预测每个盒子上有一个分解面罩,带有空间关注地图,有助于关注信息像素和抑制噪音。我们还提出了一个改进的骨干网络VoVNetV2,其中有两个有效的战略:(1) 用于缓解大型VVVNet网络(SAG-Mask-Mask-Mask)分支的最大空间引导面罩(SAG-Mask-Mask)分支(FOS)分支,与Maste-FOS(FOS)相类似。SGAG-Mask和CMask-Lite(CMentrence Mask-Misk-Lisk-C) 分别用于大型和小型模式。使用ResNet-101-FPFN的骨干骨干, CentalMask(C-Silental-Lial-Leal-Iard) 和Sil-Ial-stan-Lest-lex-Leal-Sl-lex-Slational-Slational-Sl-Sl-Sk-Sl-Sk-Sl-Slational-Slational-C-Sl)