Knowledge proximity refers to the strength of association between any two entities in a structural form that embodies certain aspects of a knowledge base. In this work, we operationalize knowledge proximity within the context of the US Patent Database (knowledge base) using a knowledge graph (structural form) named PatNet built using patent metadata, including citations, inventors, assignees, and domain classifications. Using several graph embedding models (e.g., TransE, RESCAL), we obtain the embeddings of entities and relations that constitute PatNet. The cosine similarity between the corresponding (or transformed) embeddings entities denotes the knowledge proximity between these. We evaluate the plausibility of these embeddings across different models in predicting target entities. We also evaluate the meaningfulness of knowledge proximity to explain the domain expansion profiles of inventors and assignees. We then apply the embeddings of the best-preferred model to associate homogeneous (e.g., patent-patent) and heterogeneous (e.g., inventor-assignee) pairs of entities.
翻译:在这项工作中,我们利用使用专利元数据(包括引文、发明者、受让人和域名分类)建立的称为PatNet的知识图(结构形式),使知识接近于美国专利数据库(知识库)范围内的知识。我们利用几个图形嵌入模型(如TransE、RESCAL)获得构成PatNet的实体和关系的嵌入。相应的(或转变的)嵌入实体之间的同系性表示这些实体之间的知识接近性。我们评估了这些嵌入在不同模型中预测目标实体的可取性。我们还评估了知识接近于解释发明者和受让人领域扩展概况的有意义的程度。我们然后将最佳首选模型的嵌入式用于关联的同质(如专利专利权)和异性(如发明者-分配者)实体的对配对。