The distributed inference framework is an emerging technology for real-time applications empowered by cutting-edge deep machine learning (ML) on resource-constrained Internet of things (IoT) devices. In distributed inference, computational tasks are offloaded from the IoT device to other devices or the edge server via lossy IoT networks. However, narrow-band and lossy IoT networks cause non-negligible packet losses and retransmissions, resulting in non-negligible communication latency. This study solves the problem of the incremental retransmission latency caused by packet loss in a lossy IoT network. We propose a split inference with no retransmissions (SI-NR) method that achieves high accuracy without any retransmissions, even when packet loss occurs. In SI-NR, the key idea is to train the ML model by emulating the packet loss by a dropout method, which randomly drops the output of hidden units in a DNN layer. This enables the SI-NR system to obtain robustness against packet losses. Our ML experimental evaluation reveals that SI-NR obtains accurate predictions without packet retransmission at a packet loss rate of 60%.
翻译:分布式推论框架是一种新兴的实时应用技术,通过尖端深深机学习(ML)在资源受限制的物的互联网(IoT)设备上增强功能。在分布式推论中,计算任务通过丢失的IoT网络从IoT设备卸下到其他设备或边缘服务器。然而,窄带和丢失的IoT网络造成不可忽略的包装损失和再传输,造成不可忽略的通信延迟。本研究解决了在丢失的IoT网络中包装损失造成的递增再传输悬浮的问题。我们建议采用不重复传输的方法进行分裂推论,即使在出现包装损失时,也可在不再传输的情况下实现高度准确性。在SINR网络中,关键的想法是通过以弃置方法模拟包损失来培训ML模型,从而随机地降低DNNF层中隐藏单位的输出量。这使得SI-NR系统能够在丢失包装损失时获得稳健。我们ML的实验性评估显示,SI-% Transmission IMRA在不进行精确损失预测的情况下,将S-INSMML 的精确的容器进行精确的预测。