This paper presents a machine learning strategy that tackles a distributed optimization task in a wireless network with an arbitrary number of randomly interconnected nodes. Individual nodes decide their optimal states with distributed coordination among other nodes through randomly varying backhaul links. This poses a technical challenge in distributed universal optimization policy robust to a random topology of the wireless network, which has not been properly addressed by conventional deep neural networks (DNNs) with rigid structural configurations. We develop a flexible DNN formalism termed distributed message-passing neural network (DMPNN) with forward and backward computations independent of the network topology. A key enabler of this approach is an iterative message-sharing strategy through arbitrarily connected backhaul links. The DMPNN provides a convergent solution for iterative coordination by learning numerous random backhaul interactions. The DMPNN is investigated for various configurations of the power control in wireless networks, and intensive numerical results prove its universality and viability over conventional optimization and DNN approaches.
翻译:本文提出了一个机器学习战略, 解决无线网络中分布式优化任务, 任意数量随机连接节点。 单个节点决定最佳状态, 并通过随机的反向通道链接在其它节点之间分配式协调。 这对无线网络随机型态的分布式普遍优化政策提出了技术挑战, 传统的深层神经网络( DNN)没有以僵硬的结构配置来适当应对无线网络。 我们开发了一个灵活的 DNN 形式主义, 称为分布式信息传递神经网络( DMPNN), 其分布式信息传递式网络( DMPNN ), 其前向和后向计算独立于网络型态 。 这种方法的一个关键促进因素是通过任意连接反向通道链接的迭代信息共享战略。 DMPNN 为迭代协调提供了一个集中的解决方案, 学习无数次随机反向网络互动。 DMPNN 被调查了无线网络中各种电源控制配置, 并且大量的数字结果证明了其在常规优化和 DNNN 方法上的普遍性和可行性 。