RGBD (RGB plus depth) object tracking is gaining momentum as RGBD sensors have become popular in many application fields such as robotics.However, the best RGBD trackers are extensions of the state-of-the-art deep RGB trackers. They are trained with RGB data and the depth channel is used as a sidekick for subtleties such as occlusion detection. This can be explained by the fact that there are no sufficiently large RGBD datasets to 1) train deep depth trackers and to 2) challenge RGB trackers with sequences for which the depth cue is essential. This work introduces a new RGBD tracking dataset - Depth-Track - that has twice as many sequences (200) and scene types (40) than in the largest existing dataset, and three times more objects (90). In addition, the average length of the sequences (1473), the number of deformable objects (16) and the number of annotated tracking attributes (15) have been increased. Furthermore, by running the SotA RGB and RGBD trackers on DepthTrack, we propose a new RGBD tracking baseline, namely DeT, which reveals that deep RGBD tracking indeed benefits from genuine training data. The code and dataset is available at https://github.com/xiaozai/DeT
翻译:RGBD (RGBB+深度) 对象跟踪正在形成势头,因为 RGBD 传感器在许多应用领域,例如机器人。 然而,最好的 RGBD 跟踪器是最先进的深RGB 跟踪器的扩展。 他们接受RGBD 数据培训, 深度频道用作隐蔽性探测等细微的副作用。 原因可以解释为没有足够大的 RGBD 数据集, 1) 训练深度跟踪器, 2) 向 RGB 跟踪器提出挑战, 其序列必须有深度提示。 这项工作引入了新的 RGBD 跟踪数据集—— 深度跟踪器, 其序列( 200) 和场景类型(40) 是现有最大数据集的两倍, 和场景类型(40) 3倍以上物体(90) 。 此外, 序列的平均长度(1473), 可变异对象的数量(16) 和附加说明的跟踪属性(15) 有所增加。 此外, 通过在深度跟踪跟踪系统运行 Sota RGBD 和 RGBD 跟踪器, 我们提议新的 RGBD 跟踪数据库数据库数据库, 真正的数据库将带来真正的数据。