This paper is devoted to the investigation of inverse problems related to stationary drift-diffusion equations modeling semiconductor devices. In this context we analyze several identification problems corresponding to different types of measurements, where the parameter to be reconstructed is an inhomogeneity in the PDE model (doping profile). For a particular type of measurement (related to the voltage-current map) we consider special cases of drift-diffusion equations, where the inverse problems reduces to a classical inverse conductivity problem. A numerical experiment is presented for one of these special situations (linearized unipolar case).
翻译:本文专门研究与固定流传扩散方程式模拟半导体装置有关的反面问题,在这方面,我们分析了与不同类型测量相对应的若干识别问题,其中拟重建的参数是PDE模型(剂量剖面图)中的异同性。对于特定类型的测量(与电压-电流图有关),我们考虑的是流传扩散方程式的特殊案例,其中反面问题减少为典型的反导问题。我们对这些特殊情况之一(线性单极案例)进行了数字实验。