Few-shot classification (FSC), the task of adapting a classifier to unseen classes given a small labeled dataset, is an important step on the path toward human-like machine learning. Bayesian methods are well-suited to tackling the fundamental issue of overfitting in the few-shot scenario because they allow practitioners to specify prior beliefs and update those beliefs in light of observed data. Contemporary approaches to Bayesian few-shot classification maintain a posterior distribution over model parameters, which is slow and requires storage that scales with model size. Instead, we propose a Gaussian process classifier based on a novel combination of P\'olya-Gamma augmentation and the one-vs-each softmax approximation that allows us to efficiently marginalize over functions rather than model parameters. We demonstrate improved accuracy and uncertainty quantification on both standard few-shot classification benchmarks and few-shot domain transfer tasks.
翻译:微小的分类(FSC)是让一个分类者适应隐蔽的类别的任务,有少量标签的数据集,这是通往像人类一样的机器学习道路上的一个重要步骤。巴伊西亚方法非常适合解决在微小的情景中过分适应的基本问题,因为这些方法允许从业人员根据观察到的数据具体说明先前的信念和更新这些信念。巴伊西亚的近距离分类方法在模型参数上保持了后方分布,这种分布缓慢,需要用模型尺寸来储存。相反,我们提议了一个高萨进程分类器,其基础是新颖的组合,即P\'olya-Gamma 增强和一五分软体形近似,使我们能够有效地在功能而不是模型参数上边缘化。我们从标准的微小分类基准和少量域传输任务上展示了更高的准确性和不确定性的量化。