Object-oriented SLAM is a popular technology in autonomous driving and robotics. In this paper, we propose a stereo visual SLAM with a robust quadric landmark representation method. The system consists of four components, including deep learning detection, object-oriented data association, dual quadric landmark initialization and object-based pose optimization. State-of-the-art quadric-based SLAM algorithms always face observation related problems and are sensitive to observation noise, which limits their application in outdoor scenes. To solve this problem, we propose a quadric initialization method based on the decoupling of the quadric parameters method, which improves the robustness to observation noise. The sufficient object data association algorithm and object-oriented optimization with multiple cues enables a highly accurate object pose estimation that is robust to local observations. Experimental results show that the proposed system is more robust to observation noise and significantly outperforms current state-of-the-art methods in outdoor environments. In addition, the proposed system demonstrates real-time performance.
翻译:面向对象的 SLAM 是自主驾驶和机器人中最受欢迎的技术。 在本文中, 我们提出一个立体视觉 SLAM, 具有强大的四重标志表示法。 该系统由四个部分组成, 包括深学习检测、 面向对象的数据关联、 双四重标志初始化和基于对象的表面优化。 以四重标志为基础的 SLAM 算法总是面临观测相关问题, 并且对观测噪音敏感, 从而限制了其在室外场景中的应用。 为了解决这个问题, 我们提出一个基于四重参数脱钩法的四重初始化方法, 以提高观测噪音的稳健性。 足够的对象数据关联算法和以多个提示为对象的面向对象的优化使一个非常精确的对象能够构成对当地观测的强性估计。 实验结果表明, 拟议的系统对于观测噪音更加强大, 大大超越室外环境中目前最先进的方法。 此外, 拟议的系统展示了实时性。