With the recent advances in multi-disciplinary human activity recognition techniques, it has become inevitable to find an efficient, economical & privacy-friendly approach for human-to-human mutual interaction recognition in order to breakthrough the modern artificial intelligence centric indoor monitoring & surveillance system. This study initially attempted to set its sights on the already proposed human activity recognition mechanisms and found a void in mutual interaction recognition from Wi-Fi channel information which is convenient & affordable to be utilized. Then it elucidated on the corresponding components of wireless local area network gadgets along with the channel properties, and notable underlying causes of signal & channel perturbation. Thenceforth the study conducted three experiments on human-to-human mutual interaction recognition using the proposed Self-Attention furnished Bidirectional Gated Recurrent Neural Network deep learning model which is perceived to become emergent nowadays for time-series data classification through automated temporal feature extraction. Single pair mutual interaction recognition experiment achieved a maximum of 94% test benchmark while the experiment involving ten subject-pairs secured 88% benchmark with improved classification around interaction-transition region. Demonstration of a graphical user interface executable software designed using PyQt5 python module subsequently portrayed the overall mutual human-interaction recognition procedure, and finally the study concluded with a brief discourse regarding the possible solutions to the handicaps that resulted in curtailments observed in the case of cross-test experiment.
翻译:随着人类活动的多学科识别技术的近期进展,找到高效、经济和隐私友好的人类与人类相互互动识别方法,以突破现代人工智能中心室内监测和监视系统,势必成为不可避免的。这项研究最初试图将目光放在已经提出的人类活动识别机制上,发现Wi-Fi频道信息的相互互动识别是无效的,这种信息既方便又负担得起,便于使用。随后,它阐明了无线局域网与频道特性的相对组成部分,以及信号和频道扰动的显著根本原因。此后,研究利用拟议的自控、双向相控、双向式、经常性神经网络深度学习模式,就人与人之间的相互识别进行了三次实验。 人们认为,通过自动时间特征提取,在时间序列数据分类方面,这种模式在现时空出现。 单一对等互动识别实验达到了最高94%的测试基准,而涉及10个主题平台的实验则确保了88%的交叉基准,并改进了对互动过渡区域进行分类。在使用自定义用户对用户的交互界面进行了演示,随后将共同识别的测试软件与最终完成的Py-Qsal decal decal deal ex laction a laction acudiction acal decal decal decal degration the the the the the the laction laction laction laction acuding the the laction laction laction the the the the lactionaldaldalddddddaldaldaldaldaldaldaldaldald laction laction acumentaltiction laction laction acumentaldaldaldaldaldaldddddaldaldaldalddddddaldaldaldaldaldaldaldaldaldaldaldaldaldalddaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldald