In fault-tolerant distance labeling we wish to assign short labels to the vertices of a graph $G$ such that from the labels of any three vertices $u,v,f$ we can infer the $u$-to-$v$ distance in the graph $G\setminus \{f\}$. We show that any directed weighted planar graph (and in fact any graph in a graph family with $O(\sqrt{n})$-size separators, such as minor-free graphs) admits fault-tolerant distance labels of size $O(n^{2/3})$. We extend these labels in a way that allows us to also count the number of shortest paths, and provide additional upper and lower bounds for labels and oracles for counting shortest paths.
翻译:在“容错距离”标签中,我们希望为一张G$的图的顶部分配短标签,这样,从任何三个顶部的标签上,我们可以推断出$G\setminus ⁇ f ⁇ $的距离。我们显示任何定向加权平面图(事实上,在图形的直径组中,任何图以$O(sqrt{n})为单位的平面分隔符,如无微小的图形),都承认大小为$O(n ⁇ 2/3})的不容错距离标签。我们扩大这些标签的方式使我们能够同时计算最短路径的数量,并为计算最短路径的标签和手腕提供额外的上下边框。