In this work, we provide an extensive part-of-speech analysis of the discourse of social media users with depression. Research in psychology revealed that depressed users tend to be self-focused, more preoccupied with themselves and ruminate more about their lives and emotions. Our work aims to make use of large-scale datasets and computational methods for a quantitative exploration of discourse. We use the publicly available depression dataset from the Early Risk Prediction on the Internet Workshop (eRisk) 2018 and extract part-of-speech features and several indices based on them. Our results reveal statistically significant differences between the depressed and non-depressed individuals confirming findings from the existing psychology literature. Our work provides insights regarding the way in which depressed individuals are expressing themselves on social media platforms, allowing for better-informed computational models to help monitor and prevent mental illnesses.
翻译:在这项工作中,我们对社交媒体抑郁患者的言论进行了广泛的部分分析。心理学研究表明,抑郁患者往往以自我为中心,更加关注自己,更多地了解自己的生活和情感。我们的工作旨在利用大规模数据集和计算方法对言论进行定量探索。我们使用2018年互联网研讨会(eRisk)上的早期风险预测(eRisk)中公开提供的抑郁数据集,并提取部分声音特征和基于这些数据的若干指数。我们的结果显示,抑郁患者和非抑郁患者之间在统计上存在显著差异,证实了现有心理学文献中的结论。我们的工作为抑郁患者在社交媒体平台上表达自我的方式提供了深刻见解,从而得以建立更知情的计算模型,帮助监测和预防精神疾病。