We present a class of algorithms based on rational Krylov methods to compute the action of a generalized matrix function on a vector. These algorithms incorporate existing methods based on the Golub-Kahan bidiagonalization as a special case. By exploiting the quasiseparable structure of the projected matrices, we show that the basis vectors can be updated using a short recurrence, which can be seen as a generalization to the rational case of the Golub-Kahan bidiagonalization. We also prove error bounds that relate the error of these methods to uniform rational approximation. The effectiveness of the algorithms and the accuracy of the bounds is illustrated with numerical experiments.


翻译:我们提出了一个基于理性 Krylov 方法的算法类别, 以计算向量上通用矩阵函数的动作。 这些算法将基于Golub- Kahan 的比对性化现有方法作为特例。 通过利用预测矩阵的准可分离结构, 我们显示基础矢量可以使用短暂的重复来更新, 这可以被视为对Golub- Kahan 的比对性化合理案例的概括。 我们还证明了这些方法的错误界限, 将这些方法的错误与统一的合理近似联系起来。 算法的有效性和界限的准确性可以用数字实验来说明。

0
下载
关闭预览

相关内容

专知会员服务
77+阅读 · 2021年3月16日
【文本生成现代方法】Modern Methods for Text Generation
专知会员服务
44+阅读 · 2020年9月11日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Multidimensional Scaling: Approximation and Complexity
Arxiv
3+阅读 · 2018年10月18日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员