We report lowest-order series expansions for primary matrix functions of quantum states based on a perturbation theory for functions of linear operators. Our theory enables efficient computation of functions of perturbed quantum states that assume only knowledge of the eigenspectrum of the zeroth order state and the density matrix elements of a zero-trace, Hermitian perturbation operator, not requiring analysis of the full state or the perturbation term. We develop theories for two classes of quantum state perturbations, perturbations that preserve the vector support of the original state and perturbations that extend the support beyond the support of the original state. We highlight relevant features of the two situations, in particular the fact that functions and measures of perturbed quantum states with preserved support can be elegantly and efficiently represented using Fr\'echet derivatives. We apply our perturbation theories to find simple expressions for four of the most important quantities in quantum information theory that are commonly computed from density matrices: the Von Neumann entropy, the quantum relative entropy, the quantum Chernoff bound, and the quantum fidelity.
翻译:我们根据线性运行者功能的扰动理论,报告量子状态主要矩阵功能的最低顺序序列扩展。我们的理论使得能够有效计算扰动量子的函数,这些参数只假定了解零顺序状态的微粒频度和零轨道的密度矩阵元素,Hermitian 扰动操作员,不需要分析整个状态或扰动术语。我们为两类量子状态扰动、保护原状态的矢量支持的扰动理论,以及将支持扩展至原始状态之外的扰动。我们强调了两种情况的相关特征,特别是使用Fr\'echet 衍生物可以以优雅和高效的方式代表被扰动量子状态的功能和测量值。我们运用我们的扰动理论来寻找通常从密度矩阵中计算的最重要数量中四种最重要的数量的数据的简单表达方式:Von Neumann entropy、量子相对酶、Chann Chernoff绑定和量值忠度。