We present a novel approach of 2D to 3D transfer learning based on mapping pre-trained 2D convolutional neural network weights into planar 3D kernels. The method is validated by the proposed planar 3D res-u-net network with encoder transferred from the 2D VGG-16, which is applied for a single-stage unbalanced 3D image data segmentation. In particular, we evaluate the method on the MICCAI 2016 MS lesion segmentation challenge dataset utilizing solely fluid-attenuated inversion recovery (FLAIR) sequence without brain extraction for training and inference to simulate real medical praxis. The planar 3D res-u-net network performed the best both in sensitivity and Dice score amongst end to end methods processing raw MRI scans and achieved comparable Dice score to a state-of-the-art unimodal not end to end approach. Complete source code was released under the open-source license, and this paper complies with the Machine learning reproducibility checklist. By implementing practical transfer learning for 3D data representation, we could segment heavily unbalanced data without selective sampling and achieved more reliable results using less training data in a single modality. From a medical perspective, the unimodal approach gives an advantage in real praxis as it does not require co-registration nor additional scanning time during an examination. Although modern medical imaging methods capture high-resolution 3D anatomy scans suitable for computer-aided detection system processing, deployment of automatic systems for interpretation of radiology imaging is still rather theoretical in many medical areas. Our work aims to bridge the gap by offering a solution for partial research questions.


翻译:我们提出一种2D到3D转移学习的新做法,其基础是将经过事先训练的2D进化神经网络重量纳入平面 3D内核内核,该方法由2D VGG-16型2DVG-16型平面图解转换的编码器平板 3D Res-u-net网络认证,该方法用于单一阶段不平衡的3D图像数据分解。特别是,我们评价MICCAI 2016 MS MS 分解数据集的方法,仅使用液态降低的变换恢复(FLAIR)序列,不为培训和推断模拟真正的医学方法。3D 3D Res-u-net网络在敏感度和狄氏分数方面都取得了最好的成绩,最后处理原始MRI扫描的方法也取得了类似的Dice分数,在最后处理方法上,在开放源许可证下发布了完整的源代码,而本文与机器再学习版本核对清单一致。通过对3D数据部分数据进行实际转换,我们可以在高分辨率的医学分析中,从高分辨率分析领域进行高度不平衡的数据分析,在单一的取样方法中提供一种可靠的数据。

0
下载
关闭预览

相关内容

迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
Top
微信扫码咨询专知VIP会员