Millimeter wave (mmWave) radar systems, owing to their large bandwidth, provide fine range resolution that enables the observation of multiple scatterers originating from a single automotive target commonly referred to as an extended target. Conventional CFAR-based detection algorithms typically treat these scatterers as independent detections, thereby discarding the spatial scattering structure intrinsic to the target. To preserve this scattering spread, this paper proposes a Range-Doppler (RD) segment framework designed to encapsulate the typical scattering profile of an automobile. The statistical characterization of the segment is performed using Maximum Likelihood Estimation (MLE) and posterior density modeling facilitated through Gibbs Markov Chain Monte Carlo (MCMC) sampling. A skewness-based test statistic, derived from the estimated statistical model, is introduced for binary hypothesis classification of extended targets. Additionally, the paper presents a detection pipeline that incorporates Intersection over Union (IoU) and segment centering based on peak response, optimized to work within a single dwell. Extensive evaluations using both simulated and real-world datasets demonstrate the effectiveness of the proposed approach, underscoring its suitability for automotive radar applications through improved detection accuracy.
翻译:暂无翻译