This work proposes a new method for computing acceptance regions of exact multinomial tests. From this an algorithm is derived, which finds exact p-values for tests of simple multinomial hypotheses. Using concepts from discrete convex analysis, the method is proven to be exact for various popular test statistics, including Pearson's chi-square and the log-likelihood ratio. The proposed algorithm improves greatly on the naive approach using full enumeration of the sample space. However, its use is limited to multinomial distributions with a small number of categories, as the runtime grows exponentially in the number of possible outcomes. The method is applied in a simulation study and uses of multinomial tests in forecast evaluation are outlined. Additionally, properties of a test statistic using probability ordering, referred to as the "exact multinomial test" by some authors, are investigated and discussed. The algorithm is implemented in the accompanying R package ExactMultinom.
翻译:这项工作为计算精确的多数值测试的接受区域提出了一种新的方法。 从这个算法中得出了一个算法, 它为简单多数值假设的测试找到精确的 p值。 使用离散的共振分析的概念, 这种方法被证明是各种流行的测试统计, 包括Pearson的 chi- square 和日志相似比 。 提议的算法在使用样本空间的完整查点的天真方法上大有改进。 但是, 其使用限于少数种类的多数值分布, 随着运行时间在可能的结果数量中成倍增长。 这种方法在模拟研究中应用, 预测评价中使用多数值测试 。 此外, 一些作者称之为“ 精确多数值测试” 的概率排序的测试特性得到了调查和讨论。 该算法在随附的 R 包 ExactMultinom 中应用。