In order to solve the critical issues in Wireless Sensor Networks (WSNs), with concern for limited sensor lifetime, nature-inspired algorithms are emerging as a suitable method. Getting optimal network coverage is one of those challenging issues that need to be examined critically before any network setup. Optimal network coverage not only minimizes the consumption of limited energy of battery-driven sensors but also reduce the sensing of redundant information. In this paper, we focus on nature-inspired optimization algorithms concerning the optimal coverage in WSNs. In the first half of the paper, we have briefly discussed the taxonomy of the optimization algorithms along with the problem domains in WSNs. In the second half of the paper, we have compared the performance of two nature-inspired algorithms for getting optimal coverage in WSNs. The first one is a combined Improved Genetic Algorithm and Binary Ant Colony Algorithm (IGABACA), and the second one is Lion Optimization (LO). The simulation results confirm that LO gives better network coverage, and the convergence rate of LO is faster than that of IGA-BACA. Further, we observed that the optimal coverage is achieved at a lesser number of generations in LO as compared to IGA-BACA. This review will help researchers to explore the applications in this field as well as beyond this area. Keywords: Optimal Coverage, Bio-inspired Algorithm, Lion Optimization, WSNs.


翻译:为了解决无线传感器网络(WSNs)的关键问题,在对有限的传感器寿命期的关切下,自然启发的算法正在成为一种合适的方法。获得最佳网络覆盖是需要对任何网络建立之前进行严格审查的具有挑战性的问题之一。最佳网络覆盖不仅最大限度地减少电池驱动传感器有限能量的消耗,而且减少对冗余信息的感知。在本文件中,我们侧重于自然启发的优化算法,以优化网络覆盖。在论文的前半部分,我们简要讨论了优化算法的分类学以及WSNs的问题领域。在论文的后半部分,我们比较了两个具有最佳网络激励的算法的绩效,以便在网络建立之前,在网络建设之前,为了最佳覆盖WSNS。第一个网络覆盖不仅能最大限度地减少电池驱动传感器有限能量的消耗,而且减少对多余信息的感知力。在本文中,模拟结果证实LOO会提供更好的网络覆盖,而LO的趋同率比LOA-AKA的深度范围要快得多。在IA-BA中,对IA-CA的这种最低的实地评估将帮助在IA-A-AAA的实地评估中,这是对IA-CA-CA-O的这一最低的实地评估将进行较慢的实地评估。

0
下载
关闭预览

相关内容

《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
7+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Arxiv
31+阅读 · 2021年3月29日
Arxiv
8+阅读 · 2020年10月7日
Arxiv
35+阅读 · 2019年11月7日
A Comprehensive Survey on Graph Neural Networks
Arxiv
21+阅读 · 2019年1月3日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员