We show that the Subgradient algorithm is universal for online learning on the simplex in the sense that it simultaneously achieves $O(\sqrt N)$ regret for adversarial costs and $O(1)$ pseudo-regret for i.i.d costs. To the best of our knowledge this is the first demonstration of a universal algorithm on the simplex that is not a variant of Hedge. Since Subgradient is a popular and widely used algorithm our results have immediate broad application.


翻译:我们显示,子梯度算法是通用的,用于在简单x上进行在线学习,因为它同时为对抗性成本和i.d.d.成本分别获得O(sqrt N)美元和1美元(1美元)假正值的遗憾。 据我们所知,这是首次在简单x上展示通用算法,而这不是套头的变种。由于子梯度是一种流行和广泛使用的算法,因此我们的结果可以立即广泛应用。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
10+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
10+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员