The study of network data in the social and health sciences frequently concentrates on two distinct tasks (1) detecting community structures among nodes and (2) associating covariate information to edge formation. In much of this data, it is likely that the effects of covariates on edge formation differ between communities (e.g. age might play a different role in friendship formation in communities across a city). In this work, we introduce a latent space network model where coefficients associated with certain covariates can depend on latent community membership of the nodes. We show that ignoring such structure can lead to either over- or under-estimation of covariate importance to edge formation and propose a Markov Chain Monte Carlo approach for simultaneously learning the latent community structure and the community specific coefficients. We leverage efficient spectral methods to improve the computational tractability of our approach.
翻译:社会科学和卫生科学网络数据研究往往集中于两项不同的任务:(1) 发现节点之间的社区结构,(2) 将共变信息与边缘形成联系起来,在大部分这些数据中,共同变异对边缘形成的影响在各社区之间可能有所不同(例如年龄在城市各社区友谊形成中的作用可能不同);在这项工作中,我们引入了潜伏空间网络模型,与某些共变相关的系数可能取决于节点在社区的潜在成员资格;我们表明,忽视这种结构可能导致过度或低估对边缘形成具有的共变重要性,并提出Markov连锁蒙特卡洛办法,以同时学习潜在社区结构和特定社区系数;我们利用高效的光谱方法改进我们方法的可计算性。