Anomaly detection (AD) has been an active research area in various domains. Yet, the increasing data scale, complexity, and dimension turn the traditional methods into challenging. Recently, the deep generative model, such as the variational autoencoder (VAE), has sparked a renewed interest in the AD problem. However, the probability distribution divergence used as the regularization is too strong, which causes the model cannot capture the manifold of the true data. In this paper, we propose the Projected Sliced Wasserstein (PSW) autoencoder-based anomaly detection method. Rooted in the optimal transportation, the PSW distance is a weaker distribution measure compared with $f$-divergence. In particular, the computation-friendly eigen-decomposition method is leveraged to find the principal component for slicing the high-dimensional data. In this case, the Wasserstein distance can be calculated with the closed-form, even the prior distribution is not Gaussian. Comprehensive experiments conducted on various real-world hyperspectral anomaly detection benchmarks demonstrate the superior performance of the proposed method.
翻译:异常检测(AD)是不同领域一个积极的研究领域。然而,不断增大的数据规模、复杂性和维度使传统方法变得具有挑战性。最近,深基因模型,如变异自动编码器(VAE),引发了人们对AD问题的重新兴趣。然而,由于身份正规化而使用的概率分布差异过大,导致模型无法捕捉真实数据的方块。在本文中,我们建议采用预测的Sliced Wasserstein(PSW)自动编码异常检测方法。在最佳运输中,PSW距离是比美元-diverence差的较弱的分布尺度。特别是,为计算方便的eigen-decompetation方法被利用来寻找解析高维数据的主要组成部分。在本案中,瓦瑟斯坦距离可以用封闭式计算,即使先前的分布也不高斯安。在各种真实世界超光谱异常检测基准上进行的全面实验,显示了拟议方法的优劣性。