Video snapshot compressive imaging (SCI) captures a sequence of video frames in a single shot using a 2D detector. The underlying principle is that during one exposure time, different masks are imposed on the high-speed scene to form a compressed measurement. With the knowledge of masks, optimization algorithms or deep learning methods are employed to reconstruct the desired high-speed video frames from this snapshot measurement. Unfortunately, though these methods can achieve decent results, the long running time of optimization algorithms or huge training memory occupation of deep networks still preclude them in practical applications. In this paper, we develop a memory-efficient network for large-scale video SCI based on multi-group reversible 3D convolutional neural networks. In addition to the basic model for the grayscale SCI system, we take one step further to combine demosaicing and SCI reconstruction to directly recover color video from Bayer measurements. Extensive results on both simulation and real data captured by SCI cameras demonstrate that our proposed model outperforms previous state-of-the-art with less memory and thus can be used in large-scale problems. The code is at https://github.com/BoChenGroup/RevSCI-net.
翻译:视频缩压成像(SCI) 利用 2D 探测器在一次性镜头中捕捉到一组视频框架序列。 基本原则是,在一次接触期间,对高速场景施以不同的面罩以形成压缩测量。 有了面具知识, 优化算法或深层学习方法, 利用这种快照测量重建所希望的高速视频框架。 不幸的是, 虽然这些方法可以取得体面的结果, 长期的优化算法运行时间或深层网络的大规模培训记忆性占用在实际应用中仍然无法阻止它们。 在本文中, 我们开发了一个大型视频 SCI 的记忆高效网络, 其基础是多组可逆的 3D 共生神经网络。 除了灰度 SCI 系统的基本模型外, 我们还进一步将演示和 SCI 重建结合起来, 直接从 Bayer 测量中恢复彩色视频。 SCI 模拟和摄取的真实数据的广泛结果表明, 我们提议的模型比先前的艺术状态更差,记忆性更小,因此可以用于大规模问题。 代码在 http://giusubs/ Revcom groom.