We study the problem $\#\mathrm{EdgeSub}(\Phi)$ of counting $k$-edge subgraphs satisfying a given graph property $\Phi$ in a large host graph $G$. Building upon the breakthrough result of Curticapean, Dell and Marx (STOC 17), we express the number of such subgraphs as a finite linear combination of graph homomorphism counts and derive the complexity of computing this number by studying its coefficients. Our approach relies on novel constructions of low-degree Cayley graph expanders of $p$-groups, which might be of independent interest. The properties of those expanders allow us to analyse the coefficients in the aforementioned linear combinations over the field $\mathbb{F}_p$ which gives us significantly more control over the cancellation behaviour of the coefficients. Our main result is an exhaustive and fine-grained complexity classification of $\#\mathrm{EdgeSub}(\Phi)$ for minor-closed properties $\Phi$, closing the missing gap in previous work by Roth, Schmitt and Wellnitz (ICALP 21). Additionally, we observe that our methods also apply to modular counting. Among others, we investigate the problems of modular counting of paths, cycles, forests and matroid bases. In the course of our investigations we also provide an exhaustive parameterized complexity classification for the problem of counting graph homomorphisms modulo a prime $p$.
翻译:我们研究一个问题 $ mathrm { EdgeSub} (\ Phi) 。 我们研究一个问题 $ mathrm { EdgeSub} (\ Phi), 以大主机图 $ $ $ 来计算一个符合特定图形属性的 $\ Phi$ 的 美元 。 基于Curtipapean, Dell 和 Marx (STOC 17) 的突破性结果, 我们用图表同质数的有限线性组合来表达这些子子组的数量, 并通过研究其系数来计算这个数字的复杂性。 我们的方法依赖于新设计的低度 Cayley 图形组的低度 Cayley 扩展器 $\ Phi $, 这可能具有独立的兴趣 。 这些扩展器的特性允许我们分析上述实地线性组合中的系数 $\ mathb{F\ p 。 这使我们大大增强了对取消系数的行为的控制。 我们的主要结果是详尽和细化的复杂分类 $ { { EgeSub} (\ Phi) $ $ $ $ 。 。 我们的小封闭特性分类, 我们观察了先前的工作的复杂 的 的 的 。 。