We study the problem of maximizing a non-negative monotone $k$-submodular function $f$ under a knapsack constraint, where a $k$-submodular function is a natural generalization of a submodular function to $k$ dimensions. We present a deterministic $(\frac12-\frac{1}{2e})\approx 0.316$-approximation algorithm that evaluates $f$ $O(n^4k^3)$ times, based on the result of Sviridenko (2004) on submodular knapsack maximization.
翻译:暂无翻译