In this paper we investigate how interacting agents arrive to a consensus or a polarized state. More specifically, we study the opinion formation process under the effect of a global steering mechanism (GSM). We consider that the GSM aggregates agents' opinions at the network level and feeds back to them a form of global information. We propose the GSM-DeGroot model, a new two-layer agent-based opinion formation model that captures the coupled dynamics between agent-to-agent local interactions and the GSM's steering effect. This way, agents are subject to the effects of a DeGroot-like local opinion propagation, as well as to a wide variety of possible aggregated information that can affect their opinions, such as trending news feeds, press coverage, polls, elections, etc. The cornerstone feature of our model that, contrary to the standard DeGroot model, allows polarization to emerge, is the differential way in which agents react to the global information. We explore numerically the model dynamics to find regimes of qualitatively different behavior, using simulations on synthetic data. Moreover, we challenge our model by fitting it to the dynamics of real topics, related to protests, social movements, and the escalation of a long geopolitical conflict to a war, which attracted the public attention and were recorded on Twitter. Our experiments show that the proposed model holds explanatory power, as it evidently captures real opinion formation dynamics via a relatively small set of interpretable parameters.
翻译:在本文中,我们调查互动代理人如何达成共识或形成两极分化状态。更具体地说,我们研究全球指导机制(GSM)影响下的意见形成过程。我们认为,GSM在网络一级汇总了代理人的意见,并反馈给了他们一种全球信息。我们提出了GSM-DeGroot模式,这是一种基于两层代理人的新的意见形成模式,它反映了代理人与代理人之间的地方互动和GSM的指导效应之间的动态。这样,代理就受到类似于DeGroot的当地舆论传播的影响,以及可能影响他们意见的广泛综合信息的影响,如趋势新闻源、新闻报道、投票、选举等。我们模式的基石特征与标准的DeGroot模式相反,允许两极化出现,是代理人对全球信息作出反应的不同方式。我们利用合成数据模拟,从数字角度探讨模型的动态,以寻找可定性不同行为制度。此外,我们挑战我们的模型,通过将它与真实主题的动态相匹配,与抗议、社会运动、选举、选举等可能影响到他们的意见。我们模型的基石特征的特征特征特征特征特征特征特征特征特征特征特征特征特征特征与我们所记录起来,从真正的政治上看,一个长期地展示了一场战争。