The problem of estimating the divergence between 2 high dimensional distributions with limited samples is an important problem in various fields such as machine learning. Although previous methods perform well with moderate dimensional data, their accuracy starts to degrade in situations with 100s of binary variables. Therefore, we propose the use of decomposable models for estimating divergences in high dimensional data. These allow us to factorize the estimated density of the high-dimensional distribution into a product of lower dimensional functions. We conduct formal and experimental analyses to explore the properties of using decomposable models in the context of divergence estimation. To this end, we show empirically that estimating the Kullback-Leibler divergence using decomposable models from a maximum likelihood estimator outperforms existing methods for divergence estimation in situations where dimensionality is high and useful decomposable models can be learnt from the available data.
翻译:估计具有有限样本的2个高维分布物之间差异的问题,是机器学习等不同领域的一个重要问题。虽然以前的方法在中维数据方面表现良好,但在100个二元变量的情况下,其准确性开始退化。因此,我们提议使用可分解模型来估计高维数据的差异。这使我们能够将高维分布的估计密度纳入低维功能的产物。我们进行了正式和实验性分析,以探讨在差异估计范围内使用可分解模型的特性。为此,我们从经验上表明,使用可分解模型从最大可能性的估测值模型到可分解的模型来估计Kullback-Libellr的差异,在可分解性高且可以从现有数据中学习可分解模型的现有方法。