Causal inference from observational data often rests on the unverifiable assumption of no unmeasured confounding. Recently, Tchetgen Tchetgen and colleagues have introduced proximal inference to leverage negative control outcomes and exposures as proxies to adjust for bias from unmeasured confounding. However, some of the key assumptions that proximal inference relies on are themselves empirically untestable. Additionally, the impact of violations of proximal inference assumptions on the bias of effect estimates is not well understood. In this paper, we derive bias formulas for proximal inference estimators under a linear structural equation model data generating process. These results are a first step toward sensitivity analysis and quantitative bias analysis of proximal inference estimators. While limited to a particular family of data generating processes, our results may offer some more general insight into the behavior of proximal inference estimators.
翻译:从观测数据得出的因果推断往往基于无法核实的假设,即没有无法测量的混乱。最近,Tchetgen Tchetgen和同事引入了预测性推论,以利用负控制结果和暴露作为替代物,以适应非计量的混乱造成的偏差。然而,一些主要假设,即预测性推论所依赖的这些假设本身是无法从经验上检验的。此外,违反预测性推论的假设对影响估计结果的偏差的影响还不能很好地理解。在本文中,我们为线性结构方程模型数据生成过程中的预测性推论估计者提出了偏差公式。这些结果是朝对准度推论估计者进行敏感度分析和定量偏差分析迈出的第一步。虽然我们的结果仅限于产生数据过程的特定系列,但可能对预测性推论者的行为提供更一般性的洞察力。