This work presents a hardware and software architecture which can be used in those systems that implement practical Quantum Key Distribution (QKD) and Quantum Random Number Generation (QRNG) schemes. This architecture fully exploits the capability of a System-on-a-Chip (SoC) which comprehends both a Field Programmable Gate Array (FPGA) and a dual core CPU unit. By assigning the time-related tasks to the FPGA and the management to the CPU, we built a flexible system with optimized resource sharing on a commercial off-the-shelf (COTS) evaluation board which includes a SoC. Furthermore, by changing the dataflow direction, the versatile system architecture can be exploited as a QKD transmitter, QKD receiver and QRNG control-acquiring unit. Finally, we exploited the dual core functionality and realized a concurrent stream device to implement a practical QKD transmitter where one core continuously receives fresh data at a sustained rate from an external QRNG source while the other operates with the FPGA to drive the qubits transmission to the QKD receiver. The system was successfully tested on a long-term run proving its stability and security. This demonstration paves the way towards a more secure QKD implementation, with fully unconditional security as the QKD states are entirely generated by a true random process and not by deterministic expansion algorithms. Eventually, this enables the realization of a standalone quantum transmitter, including both the random numbers and the qubits generation.


翻译:这项工作提供了一个硬件和软件架构, 可用于实施实际的 量子键分布( QKD) 和 量子随机数字生成( QRNG) 计划的系统。 这个架构充分利用了系统对齐系统( QC) 的能力, 它包含一个可编程的外地程序门阵列( FPGA) 和一个双核心CPU 单位。 通过将时间相关任务分配给 FPGA 和管理层到 CPU, 我们建立了一个灵活的系统, 在商业现货评价委员会( COTS) 上优化资源共享, 其中包括一个 SoC。 此外, 通过改变数据流方向, 多功能系统架构可以作为QKD 发射机、 QKD 接收器和 QRNG控制接收器的功能。 最后, 我们利用了双核心功能, 并实现了一个同步的流设备, 来实施一个实用的 QKD 发送器, 一个核心不断从外部QNG 源持续接收最新数据, 而另一个与 FPGA 运行, 驱动QBD 驱动QVD, 既可以将QQD 快速传输,, 并完整地运行一个稳定的运行到一个安全测试系统,,,, 将一个稳定的运行到一个稳定的运行到一个稳定的运行到一个稳定的系统,,, 完整、 完整的运行一个稳定的运行到一个稳定的运行到一个稳定的运行到一个稳定的系统。

0
下载
关闭预览

相关内容

FPGA:ACM/SIGDA International Symposium on Field-Programmable Gate Arrays。 Explanation:ACM/SIGDA现场可编程门阵列国际研讨会。 Publisher:ACM。 SIT: http://dblp.uni-trier.de/db/conf/fpga/
专知会员服务
30+阅读 · 2021年6月12日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
70+阅读 · 2020年8月2日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
105+阅读 · 2020年5月3日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Arxiv
0+阅读 · 2021年9月6日
Arxiv
6+阅读 · 2018年2月7日
VIP会员
相关资讯
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Top
微信扫码咨询专知VIP会员