In-Memory Acceleration (IMA) promises major efficiency improvements in deep neural network (DNN) inference, but challenges remain in the integration of IMA within a digital system. We propose a heterogeneous architecture coupling 8 RISC-V cores with an IMA in a shared-memory cluster, analyzing the benefits and trade-offs of in-memory computing on the realistic use case of a MobileNetV2 bottleneck layer. We explore several IMA integration strategies, analyzing performance, area, and energy efficiency. We show that while pointwise layers achieve significant speed-ups over software implementation, on depthwise layer the inability to efficiently map parameters on the accelerator leads to a significant trade-off between throughput and area. We propose a hybrid solution where pointwise convolutions are executed on IMA while depthwise on the cluster cores, achieving a speed-up of 3x over SW execution while saving 50% of area when compared to an all-in IMA solution with similar performance.
翻译:在模拟加速(IMA)中,在深神经网络(DNN)的推论中,有望大大提高效率,但在数字系统内整合IMA方面仍然存在挑战。我们建议采用一个混合结构,将8个RISC-V核心与一个IMA核心在共享模组中相连接,分析在移动NetV2瓶头层现实使用情况下的模拟计算的好处和取舍。我们探索了几个IMA集成战略,分析性能、面积和能源效率。我们表明,虽然点性层在软件实施上取得了显著的加速,但在深度层上,无法有效绘制加速器的参数导致吞吐量和面积之间的重大交换。我们提出了一种混合解决办法,即在集心中进行点进化,同时在集心中深度上进行点进,实现比SWF执行快3x的速度,同时在与具有类似性能的IMA全解决方案相比,节省了50%的地区。