Cross-correlation analysis is a powerful tool for understanding the mutual dynamics of time series. This study introduces a new method for predicting the future state of synchronization of the dynamics of two financial time series. To this end, we use the cross-recurrence plot analysis as a nonlinear method for quantifying the multidimensional coupling in the time domain of two time series and for determining their state of synchronization. We adopt a deep learning framework for methodologically addressing the prediction of the synchronization state based on features extracted from dynamically sub-sampled cross-recurrence plots. We provide extensive experiments on several stocks, major constituents of the S\&P100 index, to empirically validate our approach. We find that the task of predicting the state of synchronization of two time series is in general rather difficult, but for certain pairs of stocks attainable with very satisfactory performance.
翻译:交叉关系分析是了解时间序列相互动态的有力工具。 本研究引入了预测两个财务时间序列动态未来同步状态的新方法。 为此,我们使用交叉重复地块分析作为非线性方法,对两个时间序列时间序列时间范围内的多维连接进行量化,并确定同步状态。 我们采用了一个深层次学习框架,根据动态次抽样交叉重复地块的特征,从方法上处理同步状态预测问题。 我们对几个种群(S ⁇ P100指数的主要成分)进行了广泛的实验,以便从经验上验证我们的方法。 我们发现,预测两个时间序列同步状态的任务一般相当困难,但对于某些可达到的种群而言,其性能非常令人满意。